Developing fibrillated cellulose as a sustainable technological material – Nature.com

  • 1.

    Moon, R. J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011). A critical review on structure–property relationships in cellulose nanomaterials.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Isogai, A. Development of completely dispersed cellulose nanofibers. Proc. Jpn. Acad. Ser. B 94, 161–179 (2018).

    CAS  Google Scholar 

  • 3.

    Isogai, A., Saito, T. & Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71–85 (2011). The first paper on TEMPO treatment of nanocellulose.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Chen, C. et al. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 5, 642–666 (2020).

    ADS  CAS  Google Scholar 

  • 5.

    Isogai, A. Present situation and future prospects of Nanocellulose R&D in Japan. In 2018 Int. Conf. Nanotechnology for Renewable Materials (18NANO) (TAPPI, 2018).

  • 6.

    Arasto, A., Koljonen, T. & Similä, L. (eds) Growth by Integrating Bioeconomy and Low-Carbon Economy: Scenarios for Finland until 2050 (VTT Technical Research Centre of Finland, 2018); https://cris.vtt.fi/en/publications/growth-by-integrating-bioeconomy-and-low-carbon-economy-scenarios.

  • 7.

    Šturcová, A., Davies, G. R. & Eichhorn, S. J. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6, 1055–1061 (2005). An early report on the mechanical properties of crystalline cellulose.

    PubMed  PubMed Central  Google Scholar 

  • 8.

    Mark, R. E. Cell Wall Mechanics of Tracheids (Elliots, 1967).

  • 9.

    Dufresne, A. Nanocellulose: From Nature to High Performance Tailored Materials (Walter de Gruyter, 2017).

  • 10.

    Trovatti, E. et al. Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide. Carbohydr. Polym. 181, 256–263 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Park, H. J., Weller, C. L., Vergano, P. J. & Testin, R. F. Permeability and mechanical properties of cellulose-based edible films. J. Food Sci. 58, 1361–1364 (1993).

    CAS  Google Scholar 

  • 12.

    Mittal, N. et al. Multiscale control of nanocellulose assembly: transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano 12, 6378–6388 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 13.

    Mittal, N. et al. Ultrastrong and bioactive nanostructured bio-based composites. ACS Nano 11, 5148–5159 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Håkansson, K. M. O. et al. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat. Commun. 5, 4018 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Torres-Rendon, J. G., Schacher, F. H., Ifuku, S. & Walther, A. Mechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: a critical comparison. Biomacromolecules 15, 2709–2717 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y. & Isogai, A. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10, 162–165 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Yang, X., Reid, M. S., Olsén, P. & Berglund, L. A. Eco-friendly cellulose nanofibrils designed by nature: effects from preserving native state. ACS Nano 14, 724–735 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Wu, C.-N., Yang, Q., Takeuchi, M., Saito, T. & Isogai, A. Highly tough and transparent layered composites of nanocellulose and synthetic silicate. Nanoscale 6, 392–399 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 19.

    Guan, Q.-F. et al. Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Sci. Adv. 6, eaaz1114 (2020).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Benítez, A. J., Torres-Rendon, J., Poutanen, M. & Walther, A. Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. Biomacromolecules 14, 4497–4506 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 21.

    Sehaqui, H. et al. Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl. Mater. Interf. 4, 1043–1049 (2012).

    CAS  Google Scholar 

  • 22.

    Benítez, A. J. & Walther, A. Counterion size and nature control structural and mechanical response in cellulose nanofibril nanopapers. Biomacromolecules 18, 1642–1653 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 23.

    Song, J. et al. Processing bulk natural wood into a high-performance structural material. Nature 554, 224–228 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Lundahl, M. J., Klar, V., Wang, L., Ago, M. & Rojas, O. J. Spinning of cellulose nanofibrils into filaments: a review. Ind. Eng. Chem. Res. 56, 8–19 (2017).

    CAS  Google Scholar 

  • 25.

    Yang, X. & Berglund, L. A. Water-based approach to high-strength all-cellulose material with optical transparency. ACS Sustain. Chem. Eng. 6, 501–510 (2018). An early report on high-strength all-cellulose films.

    CAS  Google Scholar 

  • 26.

    Feng, Y., Zhang, X., Shen, Y., Yoshino, K. & Feng, W. A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr. Polym. 87, 644–649 (2012).

    CAS  Google Scholar 

  • 27.

    Zhou, Y. et al. A printed, recyclable, ultra-strong, and ultra-tough graphite structural material. Mater. Today 30, 17–25 (2019).

    CAS  Google Scholar 

  • 28.

    Liu, A., Walther, A., Ikkala, O., Belova, L. & Berglund, L. A. Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12, 633–641 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 29.

    Biswas, S. K., Sano, H., Shams, Md. I. & Yano, H. Three-dimensional-moldable nanofiber-reinforced transparent composites with a hierarchically self-assembled “reverse” nacre-like architecture. ACS Appl. Mater. Interf. 9, 30177–30184 (2017).

    CAS  Google Scholar 

  • 30.

    Wang, S. et al. Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Adv. Mater. 29, 1702498 (2017).

    Google Scholar 

  • 31.

    Lightweight Materials for Cars and Trucks https://www.energy.gov/eere/vehicles/lightweight-materials-cars-and-trucks (Vehicle Technologies Office, Office of Energy Efficiency and Renewable Energy, 2014).

  • 32.

    NCV Cellulose Nano Fiber Vehicle http://www.rish.kyoto-u.ac.jp/ncv/ (Ministry of the Environment, 2019).

  • 33.

    Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 34.

    PlasticsEurope https://www.plasticseurope.org/en (accessed October 2019).

  • 35.

    Ritchie, H. & Roser, M. Plastic pollution. In Our World in Data https://ourworldindata.org/plastic-pollution (2018).

  • 36.

    Albertsson, A.-C. & Hakkarainen, M. Designed to degrade. Science 358, 872–873 (2017).

    ADS  CAS  Google Scholar 

  • 37.

    Thakur, S. et al. Sustainability of bioplastics: opportunities and challenges. Curr. Opin. Green Sustain. Chem. 13, 68–75 (2018).

    Google Scholar 

  • 38.

    Coughlan, M. P. Mechanisms of cellulose degradation by fungi and bacteria. Anim. Feed Sci. Technol. 32, 77–100 (1991).

    CAS  Google Scholar 

  • 39.

    Wang, S., Lu, A. & Zhang, L. Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 53, 169–206 (2016).

    CAS  Google Scholar 

  • 40.

    Holland, C., Vollrath, F., Ryan, A. J. & Mykhaylyk, O. O. Silk and synthetic polymers: reconciling 100 degrees of separation. Adv. Mater. 24, 105–109 (2012).

    CAS  Google Scholar 

  • 41.

    Sharma, A., Thakur, M., Bhattacharya, M., Mandal, T. & Goswami, S. Commercial application of cellulose nano-composites—a review. Biotechnol. Rep. 21, e00316 (2019).

    Google Scholar 

  • 42.

    Cowie, J., Bilek, E. T., Wegner, T. H. & Shatkin, J. A. Market projections of cellulose nanomaterial-enabled products. Part 2: Volume estimates. TAPPI J. 13, 57–69 (2014).

    CAS  Google Scholar 

  • 43.

    Babu, R. P., O’Connor, K. & Seeram, R. Current progress on bio-based polymers and their future trends. Prog. Biomater. 2, 8 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 44.

    Wang, Q. Q. et al. Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19, 2033–2047 (2012).

    CAS  Google Scholar 

  • 45.

    Chen, L., Zhu, J. Y., Baez, C., Kitin, P. & Elder, T. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem. 18, 3835–3843 (2016). An original report on the fabrication cellulose nanocrystals and nanofibres using concentrated organic acids.

    CAS  Google Scholar 

  • 46.

    Yarbrough, J. M. et al. Multifunctional cellulolytic enzymes outperform processive fungal cellulases for coproduction of nanocellulose and biofuels. ACS Nano 11, 3101–3109 (2017).

    CAS  Google Scholar 

  • 47.

    Zhou, H., St John, F. & Zhu, J. Y. Xylanase pretreatment of wood fibers for producing cellulose nanofibrils: a comparison of different enzyme preparations. Cellulose 26, 543–555 (2019).

    CAS  Google Scholar 

  • 48.

    Hata, Y., Sawada, T., Sakai, T. & Serizawa, T. Enzyme-catalyzed bottom-up synthesis of mechanically and physicochemically stable cellulose hydrogels for spatial immobilization of functional colloidal particles. Biomacromolecules 19, 1269–1275 (2018).

    CAS  Google Scholar 

  • 49.

    Koskela, S. et al. Lytic polysaccharide monooxygenase (LPMO) mediated production of ultra-fine cellulose nanofibres from delignified softwood fibres. Green Chem. 21, 5924–5933 (2019).

    CAS  Google Scholar 

  • 50.

    Kracher, D. et al. Extracellular electron transfer systems fuel cellulose oxidative degradation. Science 352, 1098–1101 (2016).

    ADS  CAS  Google Scholar 

  • 51.

    Nogi, M., Iwamoto, S., Nakagaito, A. N. & Yano, H. Optically transparent nanofiber paper. Adv. Mater. 21, 1595–1598 (2009). An early report on cellulose-nanofibre-based transparent paper.

    CAS  Google Scholar 

  • 52.

    Fang, Z. et al. Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett. 14, 765–773 (2014).

    ADS  CAS  Google Scholar 

  • 53.

    Hsieh, M.-C., Koga, H., Suganuma, K. & Nogi, M. Hazy transparent cellulose nanopaper. Sci. Rep. 7, 41590 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Lin, C. et al. Preparation of highly hazy transparent cellulose film from dissolving pulp. Cellulose 26, 4061–4069 (2019).

    CAS  Google Scholar 

  • 55.

    Nogi, M. et al. High thermal stability of optical transparency in cellulose nanofiber paper. Appl. Phys. Lett. 102, 181911 (2013).

    ADS  Google Scholar 

  • 56.

    Ifuku, S. et al. Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8, 1973–1978 (2007).

    CAS  Google Scholar 

  • 57.

    Zhu, H. et al. Extreme light management in mesoporous wood cellulose paper for optoelectronics. ACS Nano 10, 1369–1377 (2016).

    CAS  Google Scholar 

  • 58.

    Toivonen, M. S. et al. Anomalous-diffusion-assisted brightness in white cellulose nanofibril membranes. Adv. Mater. 30, 1704050 (2018). A recent report on the mechanism of the tunable optical whiteness of cellulose nanofibre films.

    Google Scholar 

  • 59.

    Liang, H.-L. et al. Roll-to-roll fabrication of touch-responsive cellulose photonic laminates. Nat. Commun. 9, 4632 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 60.

    Wang, J. et al. Moisture and oxygen barrier properties of cellulose nanomaterial-based films. ACS Sustain. Chem. Eng. 6, 49–70 (2018).

    CAS  Google Scholar 

  • 61.

    Liu, Q. et al. Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence. Nano Energy 48, 266–274 (2018). A recent report on thermally insulating and transparent cellulose films.

    CAS  Google Scholar 

  • 62.

    Li, T. et al. A radiative cooling structural material. Science 364, 760–763 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 63.

    Lv, T., Huang, J., Liu, W. & Zhang, R. From sky back to sky: embedded transparent cellulose membrane to improve the thermal performance of solar module by radiative cooling. Case Studies Therm. Eng. 18, 100596 (2020).

    Google Scholar 

  • 64.

    Okahisa, Y., Yoshida, A., Miyaguchi, S. & Yano, H. Optically transparent wood–cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos. Sci. Technol. 69, 1958–1961 (2009).

    CAS  Google Scholar 

  • 65.

    Jung, Y. H. et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 6, 7170 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 66.

    World Health Organization 2.1 Billion People Lack Safe Drinking Water At Home, More Than Twice As Many Lack Safe Sanitation. https://www.who.int/news/item/12-07-2017-2-1-billion-people-lack-safe-drinking-water-at-home-more-than-twice-as-many-lack-safe-sanitation (WHO, 2017).

  • 67.

    Li, T. et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat. Mater. 18, 608–613 (2019). An original report on highly conductive cellulose nanostructures for thermal energy harvesting.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 68.

    Karim, Z., Mathew, A. P., Kokol, V., Wei, J. & Grahn, M. High-flux affinity membranes based on cellulose nanocomposites for removal of heavy metal ions from industrial effluents. RSC Adv. 6, 20644–20653 (2016).

    ADS  CAS  Google Scholar 

  • 69.

    Voisin, H., Bergström, L., Liu, P. & Mathew, A. Nanocellulose-based materials for water purification. Nanomaterials 7, 57 (2017).

    Google Scholar 

  • 70.

    Kim, S.-H. et al. Flexible/shape-versatile, bipolar all-solid-state lithium-ion batteries prepared by multistage printing. Energy Environ. Sci. 11, 321–330 (2018).

    CAS  Google Scholar 

  • 71.

    Kim, J.-H. et al. Nanomat Li–S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy Environ. Sci. 12, 177–186 (2019).

    CAS  Google Scholar 

  • 72.

    Li, T. et al. A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Sci. Adv. 5, eaau4238 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 73.

    Jiang, Q. et al. Bilayered biofoam for highly efficient solar steam generation. Adv. Mater. 28, 9400–9407 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 74.

    Mohammed, N., Grishkewich, N. & Tam, K. C. Cellulose nanomaterials: promising sustainable nanomaterials for application in water/wastewater treatment processes. Environ. Sci. Nano 5, 623–658 (2018).

    CAS  Google Scholar 

  • 75.

    Czaja, W., Krystynowicz, A., Bielecki, S. & Brown, R. M. Microbial cellulose—the natural power to heal wounds. Biomaterials 27, 145–151 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 76.

    Hickey, R. J. & Pelling, A. E. Cellulose biomaterials for tissue engineering. Front. Bioeng. Biotechnol. 7, 45 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 77.

    Sun, B. et al. Applications of cellulose-based materials in sustained drug delivery systems. Curr. Med. Chem. 26, 2485–2501 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 78.

    Yamada, K., Shibata, H., Suzuki, K. & Citterio, D. Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. Lab Chip 17, 1206–1249 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 79.

    An, B. W., Heo, S., Ji, S., Bien, F. & Park, J.-U. Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat. Commun. 9, 2458 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 80.

    Zhao, D. et al. A dynamic gel with reversible and tunable topological networks and performances. Matter 2, 390–403 (2020).

    Google Scholar 

  • 81.

    Czaja, W. K., Young, D. J., Kawecki, M. & Brown, R. M. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8, 1–12 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 82.

    Shoseyov, O. et al. Nanocellulose composite biomaterials in industry and medicine. In Extracellular Sugar-Based Biopolymers Matrices (eds Cohen, E. & Merzendorfer, H.) Vol. 12, 693–784 (Springer, 2019).

  • 83.

    Scherner, M. et al. In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept? J. Surg. Res. 189, 340–347 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 84.

    Ajdary, R., Tardy, B. L., Mattos, B. D., Bai, L. & Rojas, O. J. Plant nanomaterials and inspiration from nature: water interactions and hierarchically structured hydrogels. Adv. Mater. 2001085 (2020).

  • 85.

    UPM Biomedicals https://www.upm.com/businesses/upm-biomedicals/

  • 86.

    Greca, L. G., Lehtonen, J., Tardy, B. L., Guo, J. & Rojas, O. J. Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route. Mater. Horiz. 5, 408–415 (2018). An original report on the synthesis of three-dimensional nanocellulose structures.

    CAS  Google Scholar 

  • 87.

    Ajdary, R. et al. Acetylated nanocellulose for single-component bioinks and cell proliferation on 3D-printed scaffolds. Biomacromolecules 20, 2770–2778 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 88.

    Huan, S. et al. Two-phase emulgels for direct ink writing of skin-bearing architectures. Adv. Funct. Mater. 29, 1902990 (2019).

    Google Scholar 

  • 89.

    Drachuk, I. et al. Immobilization of recombinant E. coli cells in a bacterial cellulose–silk composite matrix to preserve biological function. ACS Biomater. Sci. Eng. 3, 2278–2292 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 90.

    Sun, M., Wang, Y., Shi, L. & Klemeš, J. J. Uncovering energy use, carbon emissions and environmental burdens of pulp and paper industry: a systematic review and meta-analysis. Renew. Sustain. Energy Rev. 92, 823–833 (2018). A critical review summarizing the energy use, carbon emissions and environmental impact of the pulp and paper industry.

    Google Scholar 

  • 91.

    Ma, X. et al. Energy and carbon coupled water footprint analysis for straw pulp paper production. J. Clean. Prod. 233, 23–32 (2019).

    CAS  Google Scholar 

  • 92.

    Wang, J., Tavakoli, J. & Tang, Y. Bacterial cellulose production, properties and applications with different culture methods—a review. Carbohydr. Polym. 219, 63–76 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 93.

    Shoda, M. & Sugano, Y. Recent advances in bacterial cellulose production. Biotechnol. Bioprocess Eng. 10, 1 (2005).

    CAS  Google Scholar 

  • 94.

    Shi, Z., Zhang, Y., Phillips, G. O. & Yang, G. Utilization of bacterial cellulose in food. Food Hydrocoll. 35, 539–545 (2014).

    CAS  Google Scholar 

  • 95.

    Lin, D., Liu, Z., Shen, R., Chen, S. & Yang, X. Bacterial cellulose in food industry: current research and future prospects. Int. J. Biol. Macromol. 158, 1007–1019 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 96.

    Rol, F. et al. Pilot-scale twin screw extrusion and chemical pretreatment as an energy-efficient method for the production of nanofibrillated cellulose at high solid content. ACS Sustain. Chem. Eng. 5, 6524–6531 (2017).

    CAS  Google Scholar 

  • 97.

    Hu, W. et al. Protonation process to enhance the water resistance of transparent and hazy paper. ACS Sustain. Chem. Eng. 6, 12385–12392 (2018).

    CAS  Google Scholar 

  • 98.

    Jiang, B. et al. Lignin as a wood-inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement. Adv. Funct. Mater. 30, 1906307 (2020).

    CAS  Google Scholar 

  • 99.

    Hubbe, M. A. Paper’s resistance to wetting—a review of internal sizing chemicals and their effects. BioResources 2, 106–145 (2007).

    Google Scholar 

  • 100.

    Isogai, A., Hänninen, T., Fujisawa, S. & Saito, T. Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions. Prog. Polym. Sci. 86, 122–148 (2018).

    CAS  Google Scholar 

  • 101.

    Rorrer, N. A. et al. Renewable unsaturated polyesters from muconic acid. ACS Sustain. Chem. Eng. 4, 6867–6876 (2016).

    CAS  Google Scholar 

  • 102.

    Inglis, A. J., Nebhani, L., Altintas, O., Schmidt, F. G. & Barner-Kowollik, C. Rapid bonding/debonding on demand: reversibly cross-linked functional polymers via Diels−Alder chemistry. Macromolecules 43, 5515–5520 (2010).

    ADS  CAS  Google Scholar 

  • 103.

    Ghanadpour, M., Carosio, F., Larsson, P. T. & Wågberg, L. Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromolecules 16, 3399–3410 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 104.

    Qin, S. et al. Super gas barrier and fire resistance of nanoplatelet/nanofibril multilayer thin films. Adv. Mater. Interfaces 6, 1801424 (2019).

    Google Scholar 

  • 105.

    Mohamed, A. L. & Hassabo, A. G. Flame retardant of cellulosic materials and their composites. In Flame Retardants: Polymer Blends, Composites and Nanocomposites (eds Visakh, P. M. & Arao, Y.) 247–314 (Springer, 2015).

  • 106.

    Carosio, F., Kochumalayil, J., Fina, A. & Berglund, L. A. Extreme thermal shielding effects in nanopaper based on multilayers of aligned clay nanoplatelets in cellulose nanofiber matrix. Adv. Mater. Interf. 3, 1600551 (2016).

    Google Scholar 

  • 107.

    Carosio, F., Kochumalayil, J., Cuttica, F., Camino, G. & Berglund, L. Oriented clay nanopaper from biobased components—mechanisms for superior fire protection properties. ACS Appl. Mater. Interf. 7, 5847–5856 (2015).

    CAS  Google Scholar 

  • 108.

    Gan, W. et al. Dense, self-formed char layer enables a fire-retardant wood structural material. Adv. Funct. Mater. 29, 1807444 (2019).

    Google Scholar 

  • 109.

    Thoorens, G., Krier, F., Leclercq, B., Carlin, B. & Evrard, B. Microcrystalline cellulose, a direct compression binder in a quality by design environment—a review. Int. J. Pharm. 473, 64–72 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 110.

    Bai, L. et al. Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals. 2. In vitro lipid digestion. Food Hydrocoll. 96, 709–716 (2019).

    CAS  Google Scholar 

  • 111.

    Lin, K. W. & Lin, H. Y. Quality characteristics of Chinese-style meatball containing bacterial cellulose (nata). J. Food Sci. 69, SNQ107–SNQ111 (2004).

    CAS  Google Scholar 

  • 112.

    Ong, K. J., Shatkin, J. A., Nelson, K., Ede, J. D. & Retsina, T. Establishing the safety of novel bio-based cellulose nanomaterials for commercialization. NanoImpact 6, 19–29 (2017). A recent report on the development of a safety testing plan for lignin-coated cellulose nanofibre and nanocrystals.

    Google Scholar 

  • 113.

    Zhou, B., Fu, M., Xie, J., Yang, X. & Li, Z. Ecological functions of bamboo forest: research and application. J. For. Res. 16, 143–147 (2005).

    Google Scholar 

  • 114.

    Yu, Y., Wang, H., Lu, F., Tian, G. & Lin, J. Bamboo fibers for composite applications: a mechanical and morphological investigation. J. Mater. Sci. 49, 2559–2566 (2014).

    ADS  CAS  Google Scholar 

  • 115.

    Klein, B. C., Sampaio, I. L. de M., Mantelatto, P. E., Filho, R. M. & Bonomi, A. Beyond ethanol, sugar, and electricity: a critical review of product diversification in Brazilian sugarcane mills. Biofuels Bioprod. Biorefin. 13, 809–821 (2019).

    CAS  Google Scholar 

  • 116.

    Imani, M. et al. Coupling nanofibril lateral size and residual lignin to tailor the properties of lignocellulose films. Adv. Mater. Interf. 6, 1900770 (2019).

    CAS  Google Scholar 

  • 117.

    Stone, J. E. & Scallan, A. M. Effect of component removal upon the porous structure of the cell wall of wood. J. Polym. Sci. C 11, 13–25 (1965).

    Google Scholar 

  • 118.

    Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 119.

    Henn, A. R. & Fraundorf, P. B. A quantitative measure of the degree of fibrillation of short reinforcing fibres. J. Mater. Sci. 25, 3659–3663 (1990).

    ADS  CAS  Google Scholar 

  • 120.

    Zhu, H. et al. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116, 9305–9374 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 121.

    Wang, Q. Q. et al. Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19, 1631–1643 (2012).

    CAS  Google Scholar 

  • 122.

    Zhu, H. et al. Anomalous scaling law of strength and toughness of cellulose nanopaper. Proc. Natl Acad. Sci. USA 112, 8971–8976 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 123.

    Redefining bioeconomy. FinnCERES https://www.finnceres.fi/.

  • 124.

    La Notte, L. et al. Fully-sprayed flexible polymer solar cells with a cellulose-graphene electrode. Mater. Today Energy 7, 105–112 (2018).

    Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *